STRUCTURAL REVISION OF BARLERIN AND ACETYL BARLERIN

Søren Damtoft, Søren Rosendal Jensen and Bent Juhl Nielsen
Department of Organic Chemistry, The Technical University
of Denmark, DK-2800 Lyngby, Denmark

Summary ¹H- and ¹³C-NMR data as well as chemical evidence show that the structures of barlerin and acetyl barlerin should be corrected to 8-O-acetyl shanzhiside methylester and 6,8-di-O-acetyl-shanzhiside methylester, respectively.

In 1975 two iridoid glucosides, barlerin and acetyl barlerin, were isolated from Barleria prionitis L (Acantaceae) ¹ Both compounds gave the same per-acetate with a melting point of 182° Based on ¹H-NMR and chemical data the structures were assigned as <u>1a</u> and <u>1b</u> This is so far the only report of carbocyclic iridoids allegedly having a 5, 9-double bond. However, in view of the coupling constants reported ¹ for the C-1 protons in <u>1a</u> and <u>1b</u> (2. 0 and 1 5 Hz, respectively) as well as the UV spectra [$\lambda \frac{\text{EtOH}}{\text{max}} = 235 \text{ nm} (\log \epsilon \ 3.76)$] the structures <u>1a</u> and <u>1b</u> seemed unlikely.

COOMe
$$\frac{1a}{1a}R = H$$

RO

OR

COOMe

 $\frac{2a}{2b}R = R^1 = R^2 = H$
 $\frac{2b}{2c}R = H, R^1 = Ac$

OC6H70(OR)4

In this work we have isolated the iridoids from 13 g of \underline{B} prionitis. By reversed phase chromatography we isolated 3 iridoids \underline{A} (6 mg) with a $^1\mathrm{H}\text{-NMR}$ spectrum identical with that of authentic shanzhiside methylester ($\underline{2a}$), \underline{B} (48 mg) amorphous, [a] $_{\mathrm{D}}$ - 85 $^{\mathrm{O}}$ (c 0 8, MeOH), $\mathrm{C}_{19}\mathrm{H}_{28}\mathrm{O}_{12}$, $\frac{3}{2}\,\mathrm{H}_2\mathrm{O}$ (combustion), and $\underline{\mathrm{C}}$ (65 mg), amorphous, [a] $_{\mathrm{D}}$ - 99 $^{\mathrm{O}}$ (c 2 0, MeOH), $\mathrm{C}_{21}\mathrm{H}_{30}\mathrm{O}_{13}$, $\mathrm{H}_2\mathrm{O}$ (combustion) By acetylation $\underline{\mathrm{B}}$ and $\underline{\mathrm{C}}$ gave the same hexaacetate with melting

points of 179-80° and 180-1°, respectively Exhaustive acetylation of $\underline{2a}$ gave $\underline{2d}$ with a melting point of 181-2°, [a] $_{\text{D}}$ -124° (c1.0 CHCl $_{3}$), $C_{29}H_{38}O_{17}$ (combustion) Mixed melting points of $\underline{2d}$ with the peracetates of \underline{B} and \underline{C} showed no depression. Despite the fact that barlerin is reported to be crystalline, we thus conclude, that \underline{B} and \underline{C} are barlerin and acetyl barlerin, respectively

The $^1\text{H-NMR}$ data of \underline{B} and \underline{C} are virtually identical with those reported for $\underline{1a}$ and $\underline{1b}$ However, to us they indicated that \underline{A} and \underline{B} were 8-O-acetyl-shanzhiside methylester ($\underline{2b}$) and 6,8-di-O-acetyl shanzhiside methylester ($\underline{2c}$), respectively. This was confirmed by the ^{13}C NMR data, which are presented in Table 1. The most notable differences between the spectra

Table 1 13 C NMR data for 2a, 2b, and 2c. The spectra are recorded in D₂O and have been aligned to C-6' 61 5 ppm (cf ref. 2).

Compound	C-1	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10
<u>A</u> (<u>2a</u>)	94 7	152 7	110 6	39 7	76 2	48 6	78 8	50 4	24 2
<u>B</u> (<u>2b</u>)	95 4	153 5	109 2	41 0	75 3	46.7	89 8	48 8	22 5 1 acetyl
<u>C</u> (<u>2c</u>)	95 1	154 3	108 0	38 7	78 8	44 3	89 5	48 9	22 4 2 acetyl

 $\underline{\underline{A}}$ and $\underline{\underline{B}}$ are the downfield shift (11 ppm) of C-8 in $\underline{\underline{B}}$, and the upfield shifts of C-7, C-9, and C-10 ($\underline{\underline{ca}}$ 2 ppm) This establishes that $\underline{\underline{B}}$ is the 8-O-acetyl derivative of $\underline{\underline{A}}$ ($\underline{\underline{cf}}$ ref 3) Comparison of the spectra $\underline{\underline{B}}$ and $\underline{\underline{C}}$ shows a downfield shift (2 5 ppm) of C-6 and upfield shifts of C-5 and C-7 ($\underline{\underline{ca}}$ 2 ppm) in $\underline{\underline{C}}$ This confirms that $\underline{\underline{C}}$ is the 6-O-acetyl derivative of $\underline{\underline{B}}$

Thus we conclude that barlerin and acetyl barlerin are 8-O-acetyl shanzhiside methylester (2b) and 6,8-di-O-acetyl shanzhiside methylester (2c)

We thank the Royal Botanic Garden, Edinburgh for the plant material (No 780236) and the Danish Natural Science Research Council for financial assistance

- 1. Taneja, S C., and Tiwari, H P, Tetrahedron Letters, 1975, 1995
- 2. Damtoft, S , Jensen, S R , and Nielsen, B J , Phytochemistry 16, 2712 (1981)
- Chaudhuri, R K , Afifi-Yazar, F.U , Sticher, O , and Winkler, T , Tetrahedron 36, 2317 (1980)

(Received in UK 5 July 1982)